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Abstract

Binary Golay sequence pairs exist for lengths 2, 10 and 26 and, by Turyn’s product con-
struction, for all lengths of the form 2a10b26c where a, b, c are non-negative integers. Computer
search has shown that all inequivalent binary Golay sequence pairs of length less than 100 can
be constructed from five “seed” pairs, of length 2, 10, 10, 20 and 26.

We give the first complete explanation of the origin of the length 26 binary Golay seed pair,
involving a Barker sequence of length 13 and a related Barker sequence of length 11. This is
the special case m = 1 of a general construction for a length 16m+ 10 binary Golay pair from
a related pair of Barker sequences of length 8m+ 5 and 8m+ 3, for integer m ≥ 0. In the case
m = 0, we obtain an alternative explanation of the origin of one of the length 10 binary Golay
seed pairs. The construction cannot produce binary Golay sequence pairs for m > 1, having
length greater than 26, because there are no Barker sequences of odd length greater than 13.

Keywords Barker sequence, binary sequence, construction, existence, Golay sequence pair

1 Introduction

We consider a length s sequence to be an s-tuple A = (A0, A1, . . . , As−1) of real-valued entries.
The sequence (Ai) is defined over an alphabet W if each sequence element Ai takes values in W .
In the case W = {1,−1} the sequence is binary, and in the case W = {0, 1,−1} it is ternary. The
aperiodic autocorrelation function of a length s sequence A = (Ai) is given by

CA(u) :=
s−1−u∑

i=0

AiAi+u for integer u satisfying |u| < s,

and measures the extent to which the sequence resembles a shifted copy of itself. A classical
problem of digital sequence design is to determine long binary sequences A for which |CA(u)| is
small for all nonzero u. The ideal sequence from this point of view is a Barker sequence, namely a
binary sequence A for which

|CA(u)| = 0 or 1 for all u 6= 0

(and where |CA(u)| = 1 exactly when s− u is odd).
The only lengths s > 1 for which a Barker sequence (Ai) is known to exist are 2, 3, 4, 5, 7,

11 and 13. Using the symbols + and − to represent the sequence elements 1 and −1 respectively,
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examples for these lengths are

s = 2 : [+ +]

s = 3 : [+ + −] (1)

s = 4 : [+ + + −]

s = 5 : [+ + + − +] (2)

s = 7 : [+ + + − − + −]

s = 11 : [+ + + − − − + − − + −] (3)

s = 13 : [+ + + + + − − + + − + − +]. (4)

These examples are unique for their length, up to equivalence under one or more of the transfor-
mations

(Ai) 7→ (−Ai), (5)
(Ai) 7→ (As−1−i), (6)

(Ai) 7→ ((−1)iAi). (7)

No Barker sequence of length greater than 13 is known, and it has been conjectured since at least
1960 [18, p. II-2] that no such sequence exists. The conjecture is known to hold for even lengths
s < 1022 [15], and was proved for all odd lengths in 1961:

Theorem 1 (Turyn and Storer [19]). There is no Barker sequence of odd length s > 13.

See [12] for further details, and a survey of historical responses to the apparent nonexistence of
long Barker sequences.

A length s Golay sequence pair is a pair of length s sequences A and B for which

CA(u) + CB(u) = 0 for all u 6= 0.

A Golay sequence is a sequence that is a member of at least one Golay sequence pair. Golay se-
quences and Golay sequence pairs are of practical importance as an alternative to Barker sequences,
and have been used in diverse digital information processing applications including infrared multi-
slit spectrometry [8], optical time domain reflectometry [16], power control for multicarrier wireless
transmission [3], and medical ultrasound [17]. Golay sequence pairs are also of theoretical impor-
tance for their mathematical structure. The two central theoretical questions are: for what lengths
and over what alphabets does a Golay sequence pair exist, and how many distinct Golay sequences
and Golay sequence pairs of a given length over a given alphabet are there? See [6] and [7] for
recent progress on this second question, for length 2m.

Our principal interest in this paper is binary Golay sequence pairs. Examples of such pairs
are known for lengths 2, length 10 (as classified by Golay [9] in 1961), and length 26 (as found by
Golay [10] in 1962 by hand, and independently by Jauregui [11] by exhaustive computer search):

s = 2 :
A = [+ +]
B = [+ −]

}
(8)

s = 10 :
A = [+ + − − + + + − + −]
B = [+ + + + + − + − − +]

}
(first pair) (9)

s = 10 :
A = [+ + − + − + − − + +]
B = [+ + − + + + + + − −]

}
(second pair) (10)

s = 26 :
A = [+ + + + − + + − − + − + − + − − + − + + + − − + + +]
B = [+ + + + − + + − − + − + + + + + − + − − − + + − − −]

}
.

(11)
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An unordered binary Golay sequence pair A,B is considered equivalent to another pair of the same
length if it can be transformed into that pair by a sequence of operations taken from: applying (5)
to A or B; applying (6) to A or B; applying (7) to both A and B. Up to equivalence, the only
binary Golay sequence pairs of length 2, 10 and 26 are (8)–(11).

In 1974, Turyn [20] gave a composition construction for binary Golay sequence pairs that
produces a pair of length st from a pair of length s and a pair of length t. Repeated application
of this construction to the pairs (8)–(11) shows that length 2a10b26c binary Golay sequence pairs
exist for all integers a, b, c ≥ 0; and no binary Golay sequence pairs are known whose length does
not have this form. Moreover, exhaustive computer search [1] shows that all inequivalent binary
Golay sequence pairs of length less than 100 can be formed using a composition construction due
to Budĭsin [2], starting from just five “seed” pairs: the pairs (8)–(11), together with the length 20
binary Golay sequence pair

A = [+ + + + − + − − − + + − − + + − + − − +]
B = [+ + + + − + + + + + − − − + − + − + + −]

}
. (12)

It is then natural to ask how the binary seed pairs (9)–(12) arise. (The length 2 seed pair (8) hardly
requires explanation but, if desired, it can be constructed from the trivial length 1 pair [+], [+].)
While it is known that the length 10 seed pairs (9) and (10) can be constructed from the simple
length 3 ternary Golay pair [+ + −] , [+ 0 +] (see Section 4), no convincing explanation has
yet been found for the origin of the length 26 seed pair (11).

In this paper we establish the (certainly to us) surprising result that the length 26 Golay seed
pair (11) can be constructed from the length 13 Barker sequence (4) and the length 11 Barker
sequence (3). In fact, we give a general construction for a binary Golay sequence pair of length
16m+ 10 from a Barker sequence of length 8m+ 5 and a related Barker sequence of length 8m+ 3,
for any integer m ≥ 0. In the case m = 0, this gives an alternative method of construction of the
second length 10 Golay pair (10), from the length 5 Barker sequence (2) and the length 3 Barker
sequence (1). Although, by Theorem 1, the construction cannot produce any new binary Golay
sequence pairs, it nonetheless provides insight into how the numbers 10 and 26 arise in the study
of binary Golay sequence pairs.

2 Definitions and notation

This section contains definitions and notation that will be used in the rest of the paper.
Let A = (Ai) be a sequence of length s. The polynomial corresponding to A (also known as the

generating function of A) is the degree s− 1 polynomial

A(x) :=
s−1∑
i=0

Aix
i.

If the elements of a sequence have been specified by a letter (in this case A), use of the same
letter for a polynomial will indicate that the polynomial corresponds to the sequence. We will use
polynomial notation as a convenient description for sequence operations such as shifting, padding
with zeroes, interleaving, and concatenation. Define the energy of A to be

ε(A) :=
s−1∑
i=0

A2
i .
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It is straightforward to show that (for x 6= 0)

φ(A(x)) := A(x)A(x−1)

=
s−1∑

u=−(s−1)

CA(u)xu (13)

= ε(A) +
s−1∑
u=1

CA(u)(xu + x−u), (14)

since CA(u) = CA(−u) for all u. It follows that, for sequences A = (Ai) and B = (Bi) of equal
length,

A and B form a Golay sequence pair if and only if φ(A(x)) + φ(B(x)) is constant, (15)

and if (15) holds then the value of the constant is ε(A) + ε(B). It also follows from the definition
of φ that

φ(xjA(x)) = φ(A(x)) for any integer j. (16)

Given a length s sequence A = (Ai), we write A∗ = (A∗i ) for the length s sequence given by

A∗i := As−1−i for 0 ≤ i < s,

which is the reverse of the sequence A. The polynomial corresponding to A∗ is then given by

A∗(x) = xs−1A(x−1).

We remark that extending the sequence A to length s+ 1 by setting As = 0 does not change A(x),
but does change A∗ and A∗(x): the sequence length s must be specified whenever A∗ and A∗(x)
are used. It is readily verified that, for any sequence A,

CA(u) = CA∗(u) for all u. (17)

A length s sequence (Ai) is symmetric if

Ai = As−1−i for 0 ≤ i < s,

or equivalently A∗(x) = A(x). It is anti-symmetric if

Ai = −As−1−i for 0 ≤ i < s,

or equivalently A∗(x) = −A(x). For example, A1 = [0 + 0 − + − 0 + 0] is symmetric of length 9
and A2 = [+ 0 0 − + 0 0 −] is anti-symmetric of length 8, and the corresponding polynomials
are A1(x) = x− x3 + x4 − x5 + x7 and A2(x) = 1− x3 + x4 − x7 respectively. Note that if the last
element of A1, namely 0, is removed then the resulting sequence A′1 = [0 + 0 − + − 0 +] is no
longer symmetric, even though the polynomial corresponding to A′1 is identical to that for A1: the
sequence length must be specified when describing symmetry or anti-symmetry of a sequence and
its corresponding polynomial.

A binary length 2s+ 1 sequence (Ai) is skew-symmetric if

As+i = (−1)iAs−i for 0 < i ≤ s.

We can write the polynomial corresponding to a skew-symmetric sequence (Ai) of length 2s+ 1 in
the form

A(x) = B(x2) + xC(x2), (18)
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where B(x2) and xC(x2) each correspond to a ternary sequence of length 2s+ 1. If s is even then
the sequence corresponding to B(x2) is symmetric and the sequence corresponding to xC(x2) is
anti-symmetric, while if s is odd then the sequence corresponding to B(x2) is anti-symmetric and
the sequence corresponding to xC(x2) is symmetric.

Given sequences A = (Ai) and B = (Bi), we write A+B for the sequence (Ai +Bi) and A−B
for the sequence (Ai −Bi). It is easily verified that

CA+B(u) + CA−B(u) = 2CA(u) + 2CB(u). (19)

For a sequence A = (Ai) and a real constant K, we write KA for the sequence (KAi).

3 Preliminary results

This section contains preliminary results that will be required in the proof of the construction.
Any Barker sequence of odd length 2s+ 1 is skew-symmetric, and its aperiodic autocorrelation

function is completely determined by the parity of s:

Lemma 2 (Turyn and Storer [19]). Let A be a Barker sequence of odd length 2s + 1. Then A is
skew-symmetric, and

CA(2u) = (−1)s for 0 < u ≤ s
CA(2u+ 1) = 0 for 0 ≤ u < s.

(It follows from Lemma 2 that a given Barker sequence of odd length s > 1 is equivalent to exactly
three other binary sequences, all of which can be generated by the transformations (5) and (6)
without needing to use (7).)

The following result is useful for transferring consideration from sequences A+B and A−B to
(any shifted version of) sequences A and B:

Lemma 3. Let A(x) and B(x) be polynomials corresponding to sequences, and let j, k be integers.
Then

φ(A(x) +B(x)) + φ(A(x)−B(x)) = 2φ(xjA(x)) + 2φ(xkB(x)).

Proof. Multiply (19) by xu and sum over all u. By (13), we obtain

φ(A(x) +B(x)) + φ(A(x)−B(x)) = 2φ(A(x)) + 2φ(B(x)).

The result follows from (16).

It follows from (15) that we can transform one Golay sequence pair into another:

Corollary 4. For any integers j, k, the sequences whose corresponding polynomials are xjA(x)
and xkB(x) form a Golay pair if and only if the sequences whose corresponding polynomials are
A(x) +B(x) and A(x)−B(x) form a Golay pair.

The case j = k = 0 of the next result shows that the function φ operates linearly on the sum
of a symmetric and anti-symmetric sequence. This result is stated and proved for even s in [14],
but holds without modification for all s:

Lemma 5 (Koukouvinos et al. [14, Theorem 2]). Let A = (Ai) and B = (Bi) be sequences of equal
length s, where A is symmetric and B is anti-symmetric, and let j, k be integers. Then

φ(A(x) +B(x)) = φ(xjA(x)) + φ(xkB(x)).
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Proof. Since A is symmetric and B is anti-symmetric,

A+ B = A∗ − B∗

= (A− B)∗,

because A and B have equal length s. Therefore, for all u,

CA+B(u) = C(A−B)∗(u)

= CA−B(u),

by (17). Substitution for CA−B(u) in (19) gives

CA+B(u) = CA(u) + CB(u) for all u.

By (13), we obtain
φ(A(x) +B(x)) = φ(A(x)) + φ(B(x)).

The result follows from (16).

A classical result due to Golay shows that the elements of a non-trivial binary Golay sequence
pair occur in “quads” whose product is −1:

Lemma 6 (Golay [9]). Suppose that binary sequences (Ai) and (Bi) form a Golay pair of length s >
1. Then s is even and

{Ai, Bi, As−1−i, Bs−1−i} ∈ {{+,+,+,−}, {+,−,−,−}} for 0 ≤ i < s.

4 A construction of binary Golay sequence pairs

This section describes the construction and its relation to previous studies.
We saw in Section 1 that the length 26 binary Golay seed pair (11), shown as A3, B3 in

Figure 1, is unique up to equivalence. By Corollary 4 with j = k = 0, together with (17), the
ternary sequences

A2 := (A3 + B3)/2 and B2 := (A3 − B3)∗/2 (20)

form a Golay sequence pair. By a further application of Corollary 4 with j = k = 0, the ternary
sequences

A1 := (A2 + B2)/2 and B1 := (A2 − B2)/2 (21)

also form a Golay sequence pair. Eliahou, Kervaire and Saffari [5] observed that transformations
(20) and (21) can be applied to any binary Golay sequence pair A3, B3 to derive Golay pairs A2,
B2 and A1, B1 (called, after suitable normalisation, the penultimate pair and antepenultimate pair
respectively of the pair A3, B3 in [5]); and since the positions of the zero elements of A2 and B2

must match (by applying Lemma 6 to the pair A3, B3), both derived Golay pairs will be ternary.
Transforming the binary Golay pair A3, B3 into the ternary Golay pair A1, B1 in this way is
advantageous if it is easily seen that A1, B1 form a Golay pair; in that case, we can explain the
existence of the Golay pair A3, B3 from A1, B1 by reversing the process under Corollary 4.

For example, let F = [+ + −] and G = [+ 0 +] be the length 3 ternary Golay pair with
corresponding polynomials F (x) = 1+x−x2 and G(x) = 1+x2 respectively. When transformations
(20) and (21) are applied to the first length 10 binary Golay seed pair (9), the polynomials corre-
sponding to the sequences A1 and B1 are xF (x3) and G(x3) respectively; for the second length 10
binary Golay seed pair (10), these polynomials are F (x) and x3G(x). Therefore both length 10
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A3 = [ + + + + − + + − − + − + − + − − + − + + + − − + + + ]
B3 = [ + + + + − + + − − + − + + + + + − + − − − + + − − − ]

A2 = [ + + + + − + + − − + − + 0 + 0 0 0 0 0 0 0 0 0 0 0 0 ]
B2 = [ + + + − − + + + − + − − 0 − 0 0 0 0 0 0 0 0 0 0 0 0 ]

A1 = [ + + + 0 − + + 0 − + − 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]
B1 = [ 0 0 0 + 0 0 0 − 0 0 0 + 0 + 0 0 0 0 0 0 0 0 0 0 0 0 ]

Figure 1: Decomposition of the length 26 binary Golay sequence pair under two applications of
Corollary 4

seed pairs can be constructed using (16) from the simple ternary Golay pair F , G, as noted in [5],
and no further explanation of their origin is required. (See [7] for a generalisation of this technique,
that constructs new Golay pairs of length 2m over non-binary alphabets.)

But when the transformations (20) and (21) are applied to the length 26 binary Golay seed
pair, as shown in Figure 1, it is not clear how the resulting ternary pair A1, B1 arises. A partial
explanation was provided by C.H. Yang, who gave the general construction of Theorem 7 for a
binary Golay sequence pair of length 8k+2 from binary sequences G, H and J . (Yang’s construction
is described without proof in [13], and attributed there to Ref. 15, a paper in preparation. However
this reference does not seem to have appeared in print, and neither do unpublished articles by the
same author with similar titles cited elsewhere as not yet published [5, Ref. Y3], [21, Ref. Y5].)

Theorem 7 (C.H. Yang). Let k ≥ 1 be an integer. Let G be an anti-symmetric binary sequence of
length 2k, H be a binary sequence of length k, and J be a symmetric binary sequence of length k,
with corresponding polynomials G(x), H(x) and J(x). Suppose that

φ(G(x)) + φ(H(x2) + x2k−1) + φ(J(x2)) is constant, (22)

and define
A1(x) := G(x2) + xJ(x4) and B1(x) := x3H(x4) + x4k+1, (23)

A2(x) := A1(x) +B1(x) and B2(x) := A1(x)−B1(x), (24)

A3(x) := A2(x) + x4kB∗2(x) and B3(x) := A2(x)− x4kB∗2(x).

Then the sequences whose corresponding polynomials are A3(x) and B3(x) form a length 8k + 2
binary Golay pair.

By taking k = 1 and

G(x) = 1− x
H(x) = 1

J(x) = 1

 (25)

in Theorem 7, we obtain the second length 10 binary Golay seed pair (10). Moreover, by taking
k = 3 and

G(x) = 1 + x− x2 + x3 − x4 − x5

H(x) = 1− x+ x2

J(x) = 1 + x+ x2

 (26)
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in Theorem 7, we obtain the length 26 binary Golay seed pair (11). However it is not clear
why sequences G, H and J having the required symmetry properties and whose corresponding
polynomials satisfy the key equation (22) should exist, at least in the case k = 3, so Theorem 7
still does not satisfactorily explain how the pair (11) arises.

We now present what we believe is the first convincing explanation of the origin of the length 26
binary Golay seed pair, which also gives an alternative construction for the second length 10 binary
Golay seed pair. Our construction can be viewed as the special case of k = 2m + 1 odd and
J(x) =

∑2m
i=0 x

i of Theorem 7; the novelty lies in how the polynomials G(x) and H(x) are derived.
Our motivating observation was that when sequence elements 2i and 2i+ 1 of A2 in Figure 1 are
interchanged for all i, we recover the length 13 Barker sequence (4) (followed by 13 zeroes); and
when we apply the same operation to B2 in Figure 1, we recover the image of the length 11 Barker
sequence (3) under the equivalence transformation (7) (preceded by a + symbol, and followed by
a − symbol and 13 zeroes)! It is readily shown from (23) and (24) that this is equivalent to the
observation that, for G(x) and H(x) as given in (26) and m = 1, we can decompose the polynomial
corresponding to the length 13 Barker sequence (4) as

xG(x2) + x2H(x4) +
2m+1∑
i=0

x4i, (27)

and the polynomial corresponding to the length 11 Barker sequence (3) in the related form

G(x2) + xH(x4)−
2m−1∑
i=0

x4i+3. (28)

Furthermore, for G(x) and H(x) as given in (25) and m = 0, we can decompose the polynomial
corresponding to the length 5 Barker sequence (2) in the form (27) and the polynomial correspond-
ing to the length 3 Barker sequence (1) in the form (28). These observations suggest a general
construction for a binary Golay sequence pair of length 16m+ 10 from a Barker sequence of length
8m+ 5 having the form (27) and a Barker sequence of length 8m+ 3 having the related form (28),
for any integer m ≥ 0. We consider the related Barker sequences of this construction to be given
initial objects, and make use of the structural properties of odd-length Barker sequences given by
Lemma 2.

Theorem 8. Let m ≥ 0 be an integer. Suppose that there exist Barker sequences S1 and S2 of
length 8m+ 5 and 8m+ 3 respectively, whose corresponding polynomials have the form

S1(x) := xG(x2) + x2H(x4) +
2m+1∑
i=0

x4i,

S2(x) := G(x2) + xH(x4)−
2m−1∑
i=0

x4i+3

for some binary sequences G = (Gi) and H = (Hi) of length 4m + 2 and 2m + 1 respectively. Let
A1, B1 be the length 8m+ 6 ternary sequences with corresponding polynomials

A1(x) := G(x2) +
2m∑
i=0

x4i+1 and B1(x) := x3H(x4) + x8m+5,

let A2, B2 be the length 8m+ 6 ternary sequences with corresponding polynomials

A2(x) := A1(x) +B1(x) and B2(x) := A1(x)−B1(x),
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and let A3, B3 be the length 16m+ 10 binary sequences with corresponding polynomials

A3(x) := A2(x) + x8m+4B∗2(x) and B3(x) := A2(x)− x8m+4B∗2(x).

Then A3 and B3 form a length 16m+ 10 binary Golay pair.

Proof. We can verify from the definition of Ai and Bi for i = 1, 2, 3 that A3 and B3 are indeed
length 16m + 10 binary sequences. We claim that A1 and B1 form a Golay pair. It then follows
from Corollary 4 with j = k = 0 that A2 and B2 form a Golay pair. Then from (17), together with
Corollary 4 with j = 0, k = −(8m + 4), it follows that A3 and B3 form a Golay pair, completing
the proof. It remains only to establish the claim.

We note firstly that by Lemma 2, the Barker sequence S1 of length 8m+ 5 is skew-symmetric.
By writing S1(x) in the form (18), it follows that

the polynomial H(x4) corresponds to a symmetric sequence of length 8m+ 1, (29)

and

the polynomial G(x2) corresponds to an anti-symmetric sequence of length 8m+ 3. (30)

We next use (16) to write φ(B1(x)) = φ(B1(x)/x), so that from the definition ofA1(x) andB1(x)
we have

2 [φ(A1(x)) + φ(B1(x))] = 2φ

(
G(x2) +

2m∑
i=0

x4i+1

)
+ 2φ

(
x2H(x4) + x8m+4

)
= 2φ

(
G(x2)

)
+ 2φ

(
2m∑
i=0

x4i

)
+ 2φ

(
x2H(x4) + x8m+4

)
,

by (30) and Lemma 5 with s = 8m+ 3, A(x) =
∑2m

i=0 x
4i+1, B(x) = G(x2), j = −1 and k = 0. By

applying Lemma 3 with A(x) = x2H(x4) +x8m+4, B(x) =
∑2m

i=0 x
4i and j = k = 0, we then obtain

2 [φ(A1(x)) + φ(B1(x))]

= 2φ
(
G(x2)

)
+ φ

(
x2H(x4) +

2m+1∑
i=0

x4i

)
+ φ

(
x2H(x4) + x8m+4 −

2m∑
i=0

x4i

)
. (31)

Now by (29) and (30) we can apply Lemma 5 with s = 8m+ 5, A(x) = x2H(x4) +
∑2m+1

i=0 x4i,
B(x) = xG(x2), j = 0 and k = −1 to obtain from the definition of S1(x) that

φ(S1(x)) = φ(G(x2)) + φ

(
x2H(x4) +

2m+1∑
i=0

x4i

)
. (32)

We can similarly apply Lemma 5 with s = 8m+ 3, A(x) = xH(x4)−
∑2m−1

i=0 x4i+3, B(x) = G(x2),
j = 1 and k = 0 to obtain from the definition of S2(x) that

φ(S2(x)) = φ(G(x2)) + φ

(
x2H(x4)−

2m∑
i=1

x4i

)

= φ(G(x2)) + φ

(
x2H(x4) + x8m+4 −

2m∑
i=0

x4i

)
− φ

(
x8m+4 − 1

)
(33)
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by (29) and Lemma 5 with s = 8m + 5, A(x) = x2H(x4) −
∑2m

i=1 x
4i, B(x) = x8m+4 − 1 and

j = k = 0. Substitution of (32) and (33) in (31) then gives

2 [φ(A1(x)) + φ(B1(x))] = φ(S1(x)) + φ(S2(x)) + φ
(
x8m+4 − 1

)
= φ(S1(x)) + φ(S2(x)) + 2− x8m+4 − x−(8m+4) (34)

by the definition of φ. But S1 and S2 are respectively a Barker sequence of length 8m + 5 and
8m+ 3, and so by Lemma 2 and (14) we have

φ(S1(x)) = 8m+ 5 +
4m+2∑
u=1

1.(x2u + x−2u),

φ(S2(x)) = 8m+ 3 +
4m+1∑
u=1

(−1).(x2u + x−2u).

Substitution in (34) then gives

2 [φ(A1(x)) + φ(B1(x))] = 16m+ 10,

so that A1 and B1 form a Golay pair by (15). This establishes the claim.

For the case m = 1 of Theorem 8, take S1 to be the length 13 Barker sequence (4) and take
S2 to be the length 11 Barker sequence (3). This fixes the sequences G = [+ + − + − −] and
H = [+ − +] . The pairs Ai, Bi for i = 1, 2, 3 are then determined as in Figure 1 (but without
12 trailing zeroes for i = 1, 2), and A3, B3 is the length 26 binary Golay seed pair (11). For the
case m = 0 of Theorem 8, take S1 to be the length 5 Barker sequence (2) and take S2 to be the
length 3 Barker sequence (1). This fixes the sequences G = [+ −] and H = [+], and the pairs
Ai, Bi for i = 1, 2, 3 are then determined as shown in Figure 2. We see that A3, B3 is the second
length 10 binary Golay seed pair (10).

A1 = [ + + − 0 0 0 ]
B1 = [ 0 0 0 + 0 + ]

A2 = [ + + − + 0 + ]
B2 = [ + + − − 0 − ]

A3 = [ + + − + − + − − + + ]
B3 = [ + + − + + + + + − − ]

Figure 2: Construction of the second length 10 binary Golay seed pair under Theorem 8

5 Comments

We believe that Theorem 8 provides the first convincing explanation of the origin of the length 26
binary Golay seed pair (11), as well as an alternative explanation of the origin of the second
length 10 binary Golay seed pair (10). The last of the five binary Golay seed pairs (8)–(12)
described in Section 1 whose origin remains to be satisfactorily explained is the length 20 pair (12).
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Although Theorem 8 is valid for all integers m ≥ 0, it cannot be used to produce binary Golay
pairs of length 16m + 10 for m > 1 because the supply of odd-length Barker sequences runs out
at length 13, by Theorem 1. This can also be explained by noting that the “gap number” of the
binary Golay pair A3, B3 constructed in Theorem 8 (namely the number of internal zeroes in the
pair A2, B2 resulting from (20)) is 1, and appealing to the result of Eliahou, Kervaire and Saffari [5,
Thm. 4.8] that any binary Golay pair with a gap number of 1 must have length 10 or 26. (This
observation was previously made in [5] in relation to C.H. Yang’s Theorem 7, of which Theorem 8
can be viewed as a special case.)

To our knowledge, Theorem 8 is the first result linking binary Golay sequence pairs to odd-
length Barker sequences. While we consider this connection to be unexpected, there is a well-known
result linking binary Golay sequence pairs and even-length Barker sequences: if (Ai) is a Barker
sequence of even length s, then (Ai) and ((−1)iAi) form a binary Golay sequence pair of length s.
This result is used to deduce Corollary 10 from Theorem 9.

Theorem 9 (Eliahou, Kervaire and Saffari [4], [5]). Suppose there exists a binary Golay sequence
pair of even length s. Then s has no prime factor congruent to 3 modulo 4.

Corollary 10. Suppose there exists a Barker sequence of even length s. Then s has no prime
factor congruent to 3 modulo 4.
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